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Section 1

SUMMARY

The present project consisted of an analytical study of the perform-

ance of a flow-through-electrode, hydrogen-oxygen fuel cell stack. The purpose

of this study was to compare the potential system weight with those of other power
sources, such as silver-zinc batteries and other fuel cell systems. It can thus be
established whether or not there is a mission duration for which use of flow-through
electrodes is advantageous. It was found that an efficiently packaged system, oper-
ating at electrolyte saturator pressures of 10 to 50 atm, should deliver 300 to 500
watt-hours per pound of total system weight for a 24-hour mission, and 100 to 150
watt-hours per pound for a 5-hour mission. The system appears to have no advan-

tages for longer missions.

Overall system performance was calculated with confidence, since all
kinetic and mass transfer input data have an experimental basis. The performance
of such high current-density flow-through electrodes, however, should be confirmed
experimentally, since the calculations are based on simplified, idealized structures.
The performance of the saturators needs experimental confirmation as well, not as
much in terms of achievable mass-transfer rates as to ascertain whether any flow

or side leakage problems are encountered with such controlled wetting structures.

The total system weight was found to be relatively insensitive to elec-
trode current density in the 0.15 to 0.40 ampere/cm2 range. The optimum saturator

pressure was found to be between 20 and 50 atm for all cases.

If further development of such a system proves to be desirable, it is
recommended that the performance of the saturator structures described in this
report be confirmed experimentally. An experimental check of the predicted elec-
trode performances would be desirable as well, since flow-through oxygen and hydro-
gen electrodes have not been operated yet at the high reactant concentrations at which

optimum system weights are achieved.



Section 2

INTRODUCTION

The present project was performed in response to NASA's requirement
for new concepts in fuel-cell reactor design, with the potential of achieving higher
specific power outputs and of resulting in simpler and more rugged and reliable

systems.

The concept studied by Dynatech incorporates as its basic feature the
use of '"flooded" or "flow-through' electrodes. Such "flow-through' electrodes
are not new to the fuel cell field. The author successfully operated such devices
as early as 1960 (Refs. 1, 2), and more exhaustive although idealized mathematical
analyses of such electrodes were later performed by Tobias and coworkers at the
University of California. The main emphasis on such devices was on their use as

a research tool or their application in conjunction with soluble fuels.

The potential practical application of this concept to HZ—O2 fuel cells,
however, has not been either fully understood or brought into practice.

In all current gas-fueled fuel cells the electrode structure serves a
multiplicity of functions such as:

1. Carrying the electrical current to the current collectors.

2. Providing the catalytic surface for chemisorption and the

electrochemical reaction to take place.

3. Separating the liquid from the gaseous phase while pro-
viding the interfacial area for the reactant solution-
diffusion and the reaction product diffusion-removal

processes to take place.

Considerable insight has been gained into the way in which all these processes take
place. The electrochemical kinetics have been successfully isolated from the dif-

fusion processes, and in many cases it is now possible to predict the performance



of or "design'' porous electrodes (Ref. 3), such design being directed towards the
maximization of electrode performance through suitable compromise between the
different geometric and materials variables and the multiple functions that the

electrode must serve.

Specifically, the present system separates the gas dissolution process
from the electrode, as in the scheme shown in Figure 1. A cursory glance at such
a system may result in dismissing it as apparently complex and bulky. A quanti-
tative estimate of the component's dimensions, however, shows that with proper
design this is not the case.

The system consists of two liquid loops where the electrolyte, contain-
ing the respective reactants in solution, is forced through electrodes in which a
large fraction of the reactants is depleted. The electrolyte is then recirculated
through the respective liquid-gas contactors, where the reactant gases from the
storage containers are dissolved, ''recharging'' the electrolyte. The heat gener-
ated at the electrodes is dissipated in part at the radiator and in part, as latent
heat, in the evaporator.

Electrode material and structure can be designed so that mass transfer
occurs from the bulk liquid to the total active electrode surface so that the electro-
chemical process is not so localized. The parameters influencing such an optimi-

zation are:
1. The catalytic area participating in the reaction.
2. The mass transfer from the bulk fluid to such area.
3. The ohmic drops through electrode material and electolyte.
4. Pressure drops (parasitic power requirements).

Similarly, the saturators can be designed specifically for their function, now inde-
pendent of the electrode process, providing a suitable compromise between gas-

liquid contact area and pressure drops.
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The physical model adopted for this study is presented in Section 3,
with comments on specific assumptions and design decisions. A mathematical
model of the total system was constructed and a multi-variate optimization pro-
gram was utilized to calculate the minimum system weight with respect to the fol-
lowing optimizable quantities:

1. Current Density at Geometric Electrode Area. Geometric
electrode area is defined as the projected area of the elec-
trode at the two electrode interfaces.

2. Maximum Local Current Density at Oxygen Electrode.
(Based on the internal or micropore area of the structure.)

3. Oxygen Electrode Pore Size.
4. Hydrogen Electrode Pore Size.
5. Hydrogen Electrode Through Electrolyte Flow.

Such an optimization was carried out for a variety of cases, where the following
conditions were explored: '

1. Mission Length (5 hours to 10 days)’ 7
2. Saturator Pressure (5 atm to 50 atm)
3. System Operating Temperature (20° C to 100°C)
4. Oxygen Electro-Catalyst (Pt or Ag)
The results for the optimized system are presented and discussed in Section 5.

Diagrams of the electrode arrangement for the fuel-cell stack and the
proposed electrolyte manifolding to minimize power drain by short circuiting
through the electrolyte are shown in Section 6 of Appendix A.



Section 3

SYSTEM WEIGHT CALCULATIONS AND OPTIMIZATION PROGRAM

3.1 System Weight Calculations

A 1.0 kw net output was taken as the design basis. It was found from
preliminary calculations that the components of a system with this power output
would be of such dimensiqns that scaling down to a net output of about 500 watts
or up to 5 kw could be carried out in essentially linear fashion.

This direct proportionality between system weight and net power output
stems from the fact that the main weight components, except for reactant storage,

are made up of modular elements used in quantity.

The total system weight was computed as the sum of the main com-
ponent weights:

Total Wt. = Wt O2 electrode + Wt H2 electrode + Wt Radiator +

Wt reactants + Wt tanks‘+ Wt 02 saturator + Wt H2 saturator.

For the case of the electrodes and saturators, a factor was taken to account for
framing, enclosure, manifolds and ducting. With proper design, however, it was
found that these factors were relatively small, and thus an exact value was not
necessary to predict the total system weight with an accuracy of ten percent or
better. The effects of system pressure drop, electrode overvoltage and IR losses
all automatically become part of the fuel and tankage weight penalty with the system
weight calculation procedure used, which takes a 1.0 kw net output as the design
basis. The derivation of some of the basic performance and weight equations for
the critical components, including comments on the design concept and assump~

tions made, are presented in Appendix A.

The compilation for the calculated system weight and performance sub-
routine is included in Appendix B. The computer printout for a typical case is
shown in Appendix C.



3.2 Optimization Program

This section describes the computer optimization procedure used.
Briefly stated, the optimization consisted of calculating the total system weight
for a given set of input weight data while varying system parameters systemati-
cally until a minimum system weight is obtained.

Minimum weight and optimum design are clearly dependent on the
values of the unit weights assigned to the various components.

The inputs for optimization are the unit weights of the varioﬁs com-
ponents, while the outputs are the minimum system weight and the optimum de~
sign. The performance equations relate the system parameters, and the optimi-
zation sequence compare the system weights for different configurations and
selects the output for minimum weight. The optimization sequence for a system
with n optimizable quantities Xl’ Y1’ Zl’ etc., is the following:

1. Define an increment for each parameter.

2. Start, compute the system weight for the initial values

of the n parameters.

3. Take the X parameter, add the first increment and com-
pute the weight. If the new weight is less, use the new
value X2 and add another increment, minimizing the
weight with increasing X until the final weight begins to
rise or a limit is reached. Take the final increment,
divide it by 20 and decrease until the weight begins to
rise. Stop.

4. Keep the final value of X, begin the same procedure adding
increments to Y until the new minimum weight is reached.

Repeat this procedure for the n quantities.

5. Repeat the cycle starting again with X until the final minima
are reached.




This procedure is not effective for reaching a true minimum for some
cases when the total weight surface has double or multiple minima, such as a

saddle surface.



Section 4

RESULTS

A summary of computed system weights is shown in Figure 2 in the
form of specific energy density as a function of mission length. For long mis-
sions, the weight is mostly that of the reactants as the weight breakdown curves
of Figures 3, 4, and 5 indicate. For shorter missions, of the order of five hours
to one day, the weights of the different components are of comparable magnitude.
The system weight decreases as the operating pressure is raised, since higher
pressure allows higher electrode current densities, faster mass transfer in the
saturators and lower pumping power. Beyond 20 atmospheres, however, the
weights approach asymptotic limits so fast that there is no point in considering
the pressure increases beyond 50 atmospheres at practical current densities.

A silver catalyst at the oxygen electrode results in a lower operating voltage than
the use of platinum, and this is reflected in the considerably higher total system
weight due to the higher reactant consumption.

For a five-hour migsion, specific energy outputs of 100-150 watt-hours
per pound are predicted. These figures increase to 300-500 watt-hours per pound
and over for mission lengths of one day and more.

The weight breakdown curves of Figures 3, 4, and 5 show that the in-
dividual component weight stays about constant for the optimized system, almost
independent of mission length.

At first glance such a result appears surprising, since one would ex-
pect a trade-off between equipment size and efficiency (larger equipment size,
higher efficiency for long missions). In fact, the efficiency is almost at its pos-
sible maximum in all cases, as shown in Figure 6 for the variation of current
density and operating voltage with mission length. Higher current densities de-
crease the electrode size, but increase reactant and tankage weights; furthermore,
the added inefficiency increases the radiator, saturator and pumping requirements

as well, The result is a flat plateau around the optimum design.



Figure 7 shows the effect of electrode current density on system
weight for a system purposely designed to operate at a current density different
than the optimum. It is evident that the final system weight is relatively insen-
sitive to current density, since a variation from 0.15 to 0.40 amperes/cm2 does
not change the final energy density by more than ten percent. The presence of
double maxima and the relative flatness of the curves explain why one case pre-
sented in Figure 6 (100°C, 50 atm) seems to optimize at higher current densities
with longer mission length. The optimization program most probably became
""stuck" on a double minima at the higher current density range. The effect on

the final system weights, however, is small.

The computed parasitic power consumption remains essentially con-
stant with mission length for all cases, as shown in Figure 8. This finding is
accounted for by the fact that the main pressure drop is found at the saturators,
where the electrolyte flows through a 5 cm length of porous material, compared
with a fraction of a millimeter for thickness of the electrodes. The parasitic
power (pumping power) requirement is therefore proportional to the total liquid
circulation rate and inversely proportional to viscosity. Since electrolyte vis-
cosity and reactant solubility decrease (flow rate increases) with a temperature.
increase, the effects are partially compensating. A higher total system pressure,
however, results in lower parasitic power requirements, and it is clear that sys-

tem pressures of 5 atm or lower result in excessive pumping penalties.

In this design, no allowance was made for internal losses introduced
by short-circuiting of the electrodes stacked in series through the electrolyte. It
was decided, after order of magnitude calculations, that proper manifolding of
the electrolyte can result in long and narrow electrolyte paths, through which less
than one or two percent of the total power is dissipated, even when the cells are
stacked for 12 or 28 volt per stack.

Overall system performance was calculated with confidence, since all
kinetic and mass transfer input data have an experimental basis. The performance
of such high current-density flow-through electrodes, however, should be confirmed
experimentally, since the calculations are based on simplified, idealized structures.

10



The performance of the saturators needs experimental confirmation as well, not
as much in terms of achievable mass-transfer rates as to ascertain whether any
flow or side leakage problems are encountered with such controlled wetting struc-
tures.

Since, in all cases, the full power parasitic power demands are low,
the system can be easily started and restarted, even when the reactants have been
depleted near the electrode region, by the use of either a rechargeable or non-
rechargeable battery. The total start-up power demand will not exceed more than
20% of the full power parasitic power demand (or about 20 watts per kw of system
output) and should not last for more than a few seconds, before the reactants are
brought from the saturators to the electrodes.

A control system will be needed to regulate the electrolyte circulation
rate in proportion to the total power demand (output current). All of the compo-
nents, both active and passive, should be able to withstand a service life in excess
of 3000 hours. The only components that would require exhaustive life testing,
since no operating experience is presently available, are the saturators. Partic-
ular attention should be given to the stability of the controlled wetting structures,
and to the effects of any impurities introduced with the reactants or leached out

of exposed components.

11
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Appendix A

BASIS FOR DESIGN AND WEIGHT EQUATIONS

Al Oxygen Electrode Design

Assume a structure of parallel cylindrical pores such as in Figure Al,
where the oxygen saturated electrolyte enters the pore at x = 0. Assume the reaction
to be kinetically controlled. Actual kinetics measured experimentally and described

by the Tafel equation (Ref. 1) are used in this calculation.

I
X
- 1
+ ; v
Iy T K X . d o
, face
1
‘dx | X
L x=0
Figure Al

The electrode weights were computed from the total electrode area re-
quired, the thickness, electrolyte and separator layer thickness plus a factor for

framing, ducting and containment.

Verax ™ Vx T e 2
nd
and
v _ 4p di
2 2 dx
dx nd

From the Tafel equation, one can relate I and V,

where: Vg - electrode voltage at position x in the pore, volts
iface - geometrical electrode current density, amperes/ cm2
X - distance from along the pore from the electrode face, cm

20



L - pore length, cm

p -  electrolyte resistivity, ohms-cm
d -  pore diameter, cm
I - local current density, based on catalyst surface, amperes/ cm2

Using the convention chosen here, as V is raised, I is decreased and so
the slope of V versus I is negative

= b
V= a- 53 logeI

and so I = ¢(2-3B(V-a)
ie., V. _ 4p  -@.3/b)V-a)
2 -~ 743 ¢
dx
Put
dv _ _4p
dx 2

ax> a2 v
2 2 /B)(V - a)
4p\ 1T _ 4p . _b_ ~(2.3/B(V-a),
or (ﬂdz) 2 -t 3 3.3 © C

at x = 0 I= Ioandi= 10
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c. = 4p 2 0 4pb I
1 ( 2) 2 2.3d ‘o
md
and so —éﬂi=+J—8&I+ZC
2 2.3d p
nd
l.e - dv _ _ b dI
tTee dx 2.3 1dx

Cl < 0 is the only possible case.

i.e., 4p10 . 8;b .
2 2.3d o
rd

The differential equation is:

2.3d 1

__b dl _ dx
2.3 80b J
I\[—p— I+ 2C
with b positive

8pbl + 2C
ie., _ b 2 t:}111-1‘[2.3d 1 _ 40
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8Pb1 '
=22+ 2C
c = - b 2 tmfl \/ 2.3d 1

2 2.3 V—'z_cl'_ -201

Ce)
. b 2 14f\wd®) ©
“2C,
1

2'3\/-—2_(?

8pbl !"—'
—201 -2b 2
o (2.3d)(—2Cl) ta.n2 2.3"—201 G+ 1
- 8pb -2b ( 2
2.3d) (-2C)) 9 [2.3_ -2Cy ]
I = 55D sec T x + C,)
i X
f di = -f rdldx
i x=0
o
2 .
- rd _201 [ 8p10 i tan2.3V—2C1 x+Co)
- o) - 8p 2 -b 2
nd 1'—201
For i = 0
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L = tan

2.3 NN wdz‘/—zcl'

Limit as io —- 0

b2 401,
L = 3
2.3 —2C1 Td -ZCl
4 % 2 2 x 4pb
2Cy =(“—2) L, - 2.3d Lo
md
. 2
_ 9 1face/cm2 _ _8pb I
T 2.3d (o}
if 2 = 0
Cl

then it is impossible to operate the cell (> 0), or an infinite length is required (= 0).

If:ZC1 < 0, then

9pi 2
L = tan” face/cm

2.3
-201 s “/-201

A.2 Hydrogen Electrode Design

Experimental data (Refs. 1 and 5) indicate that the electrode kinetics does not
limit the hydrogen electrode (the exchange current density has been measured to be about
1 mA/cmz), because rough, high surface-area (platinum black coated) internal surfaces
can be used. The hydrogen flow-through electrode is, therefore, liquid phase mass trans-
fer controlled and the necessary electrode thickness (pore length) and internal voltage drop

can be calculated according to the following derivation:

24




L —  — |
! ; u
: | -—
C +dx ~=——! ~ CX C
Lo oo )
‘— ‘ dx i«—x l
——— ————
i +dx i
X X
Figure A2
Material balance around an element dx within the pore
1rd2u dCX dx Ix
3 & dx=md 5§
( 2 Fud) dCy -
2 dx X

To estimate (d C,/dx)

If K based on average cross-sectional concentration

_and LY. P .
4 x +dx 4 X X
or S 2%
4 dx X
where: X - distance along pore length from electrode surface, cm
C - hydrogen concentration in electrolyte, gram moles/ cm3
u - electrolyte velocity, cm/sec
I - local current density, based on catalyst surface, amperes/ cm2
i - geometrical current density, amperes/ cm2
d - pore diameter, cm
F - Faradays constant, 96,500 coulombs/gram equivalent
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K - mass transfer coefficient, cm/sec

p - electrolyte resistivity, ohms-cm
AV - voltage drop inside the pore, volts
L - pore length, em
dCx - 4K
CX dx ud
Cx X
Le., '/dtznc =/-—4K dx
b4 ud
C,=C, _, x=0
C
g — = - I«
x=0
or
c = c o~ (4K/ud) x
X x=0

Total current iO in amperes/pore is given by:

7Td2
10=(CX=O—CX=L) ) u-*2F
— -(4K/ud) L
and Cx=L = CX=O e
so o (wdzuZF)C 1o @K/ud) L,
o 4 x=0 (1-¢€
4i
or 1 - e—(4K/ud)L > o
md u 2ch=0
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4i
L = - —Z—dln[l— 5 ]
Td u 2FCX=0
. . 2,
ard since i = 2.25d71i
0 face
91
ud face
L =-3% 'Zn[l TUZF C ]
x=90
Calculation of Potential Drop
i 4p
dv. = X ) dx
X 7 d
and
2
di. = T y.oF dc
X 4 X
2
. 7d u- 2F
so x © 4 Cy-Cx=p)
2 -¢K/ud) L
_ md“u2F [c | o -@K/udx-C,_ge ]
4 X=
X=L
2
and so Ay =20 md”u 2F ) (e—(4K/ud)x e (4K/ud)1)dx
2 4 x= 0
md
x=0
x= 1L
_ ud -(4K/ud) x _ 1 .~4K/udL
= 2FupCX=0 [-———4K e Le
x=0
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A.3 Radiator Weight Estimate

For mission lengths over 4 hours, it is advantageous to reject heat by means
of a radiator. For shorter term missions it becomes simpler and lighter to carry some

excess water to satisfy the evaporative cooling requirements.

The total radiator required was estimated on the basis of a specific radiator
weight of 1 1b/ ft2 (standard practice) and assuming heat is radiated to outer space with a
view factor of one. The total amount of heat to be rejected per unit time is Q = (b H2
consumed/hr) (enthalpy of combustion, kw/1b) - 1.0 kw,or the total heat generated minus

the net power withdrawn.

A.4 Saturator Design and Weight Estimate

The saturators were designed on the basis of a configuration consisting of
multiple layers of wetting (i. e., porous stainless steel or nickel) and non-wetting (i.e.,
porous teflon) materials. These layers can be as thin as 0.010", and are present state-
of-the-art structures that can be purchased or manufactured. A saturator exit concen-
tration of a certain fraction of the equilibrium concentration (0. 9) was assumed in all
cases. A liquid phase diffusion path lengthof 1/4 of the wetted layer thickness was
taken for all calculations. The total interfacial saturator area could then be calculated;

for example, in the case of the oxygen saturator:
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Figure A.4.1 Saturator Structure
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In this case all concentrations refer to oxygen. The saturator weight was then
computed based on the interfacial area and the thickness and density of both gas and liquid

layers.

A.5 Reactant and Tankage Weight Estimates

Reactant consumption rate is given by total electrode area times the current
density (negligible catalytic recombination after diffusion through the separators is as-
sumed). Since this system appears attractive only at fairly high operating pressures
(10 - 50 atm), supercritical cryogenic storage was considered when evaluating tank
weights. The tank weight is proportional to the volume of reactant to be stored, but
the proportionality factor decreases as tank size increases. For the purpose of these
calculations, where the amounts to be stored are small, the tank weight was assumed
to be 0.5 1b/1b reactants. This figure checks approximately with Bendix data for super-
critical storage of LOX. This simplification results in tankage weight estimates which
are about 20% too low compared with the accepted tankage weights of 2.5 - 3.3 1b/1b
stored hydrogen and 0.29 - 0. 33 1b/lb stored oxygen. These numbers are for 20 - 30
Ibs of hydrogen and eight times as much oxygen. The present analysis considered total

reactant weights in the 30 to 500 1b range.
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A.6 Electrode Arrangement

The electrodes were assumed to be stacked in a fashion such as shown in
the sketches below. The top view of the flow-through electrode stack shows the anode
and cathode separated by a corrugated separator membrane. The total gap between
electrode surfaces is 2 mm. Manifolds at the top and bottom of the stacks keep the

streams from mixing.

Separator

Anode
Cathode

Figure A.6.1 Electrode Arrangement, Top View
The incoming or outgoing streams are manifolded in parallel into several
electrodes which are electrically connected series. The electrical leakage through these
electrolyte paths is minimized by creating long and narrow paths for current flow from

electrode to electrode, as shown in the side view of the stacks.

i
H

— o
| S
‘% .,

Cathode

Figure A.6.2 Electrode Arrangement, Side View
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Appendix B

SYSTEM PERFORMANCE AND WEIGHT SUBROUTINE

FORTRAN NOMENCLA TURE

CFACE:

CLOC:

DO2:
VH2:
DH2:
TIME:
XLO2:

XLH2:

AFACE:

ASATO:
ASATH:
VOLT:
COUT:
CHUT:
TOTP:
WEOP:

WEHP:

WRADP:

WFP:

Current density for geometric electrode area, amperes/ cm2

Oxygen electrode local (based on internal area) current
density, amperes/cm

Oxygen electrode pore diameter, cm

Electrolyte velocity through the hydrogen electrode, cm/sec
Hydrogen electrode pore diameter, cm

Mission length, hours

Oxygen electrode thickness, cm

Hydrogen electrode thickness, cm

Electrode face area, em?
Oxygen saturator gas-liquid interfacial area, cm2
Hydrogen saturator gas-liquid interfacial area, cm?
Net cell voltage, volts

Oxygen concentration at electrode exit, 10_7 g moles/cc
Hydrogen concentration at electrode exit, 10_7 g moles/ cc
Total power consumed, watts

Wt. oxygen electrode, pounds

Wt. hydrogen electrode, pounds

Wt. radiator, pounds

Wt. reactants, pounds

31



WTANKP:
WSATOP:

WSATHP:

DENS:
DELPO:
DELPH:
POEL:
PHEL:
POSAT:
PHSAT:
XLO:

XLH:

Wt. storage tanks, pounds

Wt. oxygen saturator, pounds

Wt. hydrogen saturator, pounds

Average density of saturator, grams/ em®

Pressure drop oxygen electrode, dynes/ cm2

Pressure drop hydrogen electrode, dynes/ cm2

Oxygen electrode pumping power, gram-wt/cm-sec

Hydrogen electrode pumping power, gram-wt/cm-sec

Pumping power oxygen saturator per unit electrode area, ergs/ sec—cm2
Pumping power hydrogen saturator per unit electrode area, ergs/ sec-cm2
Optimized oxygen electrode thickness, cm

Optimized hydrogen electrode thickness, cm
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RES:

DIFH:
DIFO:
VISC:

CHQ:

CcOQ:

PROPERTY DATA

System temperature, °K 291 322 373

Electrolyte resistivity, ohms-cm | 1.99 1.26 0.72

Hydrogen diffusivity, (10™° cm2/sec) 4.36 8.72 17.0

Oxygen diffusivity, (10"5 cmz/sec) 1.79 3.78 7.40

Electrolyte viscosity, gram wt/sec-cm 0.0164 0.00825 ° 0.00426

Hydrogen concentration, (10_7 g mole/ cm3) 2.23P 1.88P 1.80P

(P is saturator pressure, atmospheres)

Oxygen concentration 3.13P 2.10P 1.80P
———————————————— Pt Ag

Tafel equation constant (oxygen electrode) + 0,096 0.690

Tafel equation constant (oxygen electrode) + 0. 042 0.130
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Appendix C

COMPUTER PRINTOUT FOR A TYPICAL CASE
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